Band Engineering

Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals

Yan Sun, Zishu Zhou, Zhen Huang, Jiangbin Wu, Liujiang Zhou, Yang Cheng, Jinqiu Liu, Chao Zhu, Maotao Yu, Peng Yu, Wei Zhu, Yue Liu, Jian Zhou, Bowen Liu, Hongguang Xie, Yi Cao, Hai Li, Xinran Wang, Kaihui Liu, Xiaoyong Wang, Jianpu Wang, Lin Wang,* and Wei Huang*

To explore new constituents in two-dimensional (2D) materials and to combine their best in van der Waals heterostructures is in great demand as being a unique platform to discover new physical phenomena and to design novel functionalities in interface-based devices. Herein, PbI2 crystals as thin as a few layers are synthesized, particularly through a facile low-temperature solution approach with crystals of large size, regular shape, different thicknesses, and high yields. As a prototypical demonstration of band engineering of PbI₂-based interfacial semiconductors, PbI2 crystals are assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS₂ is enhanced in MoS₂/PbI₂ stacks, while a dramatic photoluminescence quenching of WS₂ and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between Pbl₂ and these monolayers; type I band alignment in MoS₂/PbI₂ stacks, where fast-transferred charge carriers accumulate in MoS₂ with high emission efficiency, results in photoluminescence enhancement, and type II in WS2/PbI2 and WSe2/PbI2 stacks, with separated electrons and holes suitable for light harvesting, results in photoluminescence quenching. The results demonstrate that MoS2, WS2, and WSe2 monolayers with similar electronic structures show completely distinct light-matter interactions when interfacing with PbI₂, providing unprecedented capabilities to engineer the device performance of 2D heterostructures.

Heterostructure is a versatile platform to investigate physical phenomena and to build functional devices, owing to the rich physics occurring at the 2D interface between different materials. The emergence of 2D materials—with strong confinement in one dimension and full freedom in the other two dimensionshas created a truly 2D physics world that reveals many unusual properties and new phenomena. The growing amounts of 2D semiconductors, along with the alterable combination of them in van der Waals (vdWs) heterostructures by means of sophisticated assembly techniques, have offered great flexibility in their band engineering and broad application prospects in optoelectronic devices such as on-chip photodetectors, light emitting diodes, and single photon emitter.

As a widely studied group in 2D materials, transition metal dichalcogenides (TMDs), particularly in the form of monolayers (for instance MoS₂, WS₂, and WSe₂), possess many extraordinary

Y. Sun, Z. Zhou, Z. Huang, M. Yu, Y. Liu, B. Liu, H. Xie, Y. Cao, Prof. H. Li, Prof. J. Wang, Prof. L. Wang, Prof. W. Huang Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road, Nanjing 211816, China E-mail: iamlwang@njtech.edu.cn; iamwhuang@nwpu.edu.cn Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles, CA 90089, USA Dr. L. Zhou, Dr. W. Zhu[+] Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.201806562.

[+]Present address: Westlake Institute of Advanced Study, Westlake University, Hangzhou 310024, China

DOI: 10.1002/adma.201806562

Los Alamos, NM 87545, USA

Y. Cheng, Prof. K. Liu State Key Laboratory for Mesoscopic Physics School of Physics Department Peking University Beijing 100871, China

J. Liu, Prof. X.-Y. Wang National Laboratory of Solid State Microstructures School of Physics

Nanjing University Nanjing 210093, China

Dr. C. Zhu

Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University

Singapore 639798, Singapore

Dr. P. Yu

School of Materials Science and Engineering Sun Yat-sen University

Guangzhou 510275, China

J. Zhou, Prof. X.-R. Wang National Laboratory of Solid-State Microstructures

School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures

Nanjing University Nanjing 210093, China

1806562 (1 of 8)

www.advancedsciencenews.com

www.advmat.de

properties such as good photoluminescence (PL) performance and extremely large coulomb interactions. [1,2] More importantly, these physical properties can be easily tuned by band alignment, strain effect, doping level, and the surrounding environment, which provides extensive possibilities to implement heterostructure engineering based on TMD monolayers.[3-7] The strong p-d orbital hybridization in TMDs near the Fermi energy level affects the band alignment and charge transfer between interfaces; as a result, the PL behavior of TMDs can be tuned.^[8-11] Meanwhile, most TMD/TMD heterostructures exhibit type II band alignment that is favorable to light harvesting,^[12] as characterized by the observable interlayer excitons and PL quenching.[13-18] Even though both type I and type II band alignment could be formed by interfacing black phosphorus (BP) with TMDs, the PL of TMDs is also quenched because of the narrower bandgap of BP.[19] To date, the enhanced PL emission of TMDs could be achieved with combination of boron nitride (BN), perylene tetracarboxylic dianhydride, ZnO nanorods, and metal nanoparticles, as a result of the ultrasmooth and chemically inert surface of BN, energy transfer between the organic-inorganic interface, strain relaxation, and surface plasmon effect, respectively.[20-25] Therefore, it is challenging but desirable to have a general strategy—by means of interfacing one type of 2D semiconductor—to design distinct functionalities on similar types of TMDs via manipulating the charge transfer flow in their heterostructures.

Also, there is always a strong demand for new types of 2D semiconductors that exhibit wide tunability and new optoelectronic properties. As a result, we turn our eyes to PbI₂, a layered semiconductor with a large bandgap around 2.5 eV in visible range. [26,27] PbI₂ bulk crystals have good applications in X-ray or γ-ray detection, as well as high-efficiency photodetectors and lasers at room temperature.^[28-31] Moreover, PbI₂ is commonly used as a precursor of lead halide perovskite, [32] a "star" material for building high-performance photovoltaic devices and ligh-emitting diodes.[33-36] The realization of 2D PbI₂ would facilitate us to further design and grow a variety of 2D perovskites, which should show unprecedented potential in ultrathin optoelectronic devices of high compactness and high efficiency. Similar to TMDs, PbI₂ has hexagonal crystalline pattern with a lead atom layer sandwiched between two layers of iodide atoms, featured by strong covalent in-plane bonding and weak vdWs interactions between layers. [26,37,38] The hexagonal lattice structure of layered PbI2 is depicted in Figure 1a. The lattice constants (a = b = 4.559 Å and c = 6.990 Å) are in good conformity with those of TMDs.[26] More importantly, PbI2 manifests itself as a p-type semiconductor, while most TMDs like MoS2 and WS₂ prefer to reveal n-type behavior. [39,40] Thus, the integration of PbI2 with different TMDs can form a rich variety of p-n junctions as the basic building blocks of modern electronic devices. The congruence between PbI2 and TMDs intrigues us to introduce PbI2 into 2D system, and to fabricate TMD/PbI2 heterostructures as a preliminary attempt of band structure engineering based on atomically thin PbI2 crystals.

Prof. W. Huang Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi Road, Xi'an 710072, Shaanxi, China

In this work, the synthesis and characterization of 2D PbI₂ and their interfacial interactions with several types of monolayer TMDs are under investigation. We have fabricated atomically thin PbI₂ flakes with large size, high crystallinity, and hexagonal/ triangle shape via a facile solution processing method at atmosphere. As a good example of flexible interface engineering of 2D hybrid system based on PbI2, we have transferred several TMD monolayers (taking MoS2, WS2, and WSe2 for example) on top of PbI2 flakes to assemble TMD/PbI2 heterostructures, and then systematically investigated their optical properties tuned by different interlayer interactions. An enhanced PL emission of MoS₂ is observed in MoS₂/PbI₂ stacks, but conversely, a dramatic PL quenching of WS₂ and WSe₂ is revealed in WS₂/PbI₂ and WSe₂/ PbI₂ stacks. As confirmed by first-principles calculations, we attribute these observations to type I band alignment in MoS₂/ PbI₂ stacks, but type II in WS₂/PbI₂ and WSe₂/PbI₂ stacks, as corresponding to different charge carrier transfer processes in TMD/PbI₂ heterostructures. Our results provoke research effort in PbI2 atomically thin crystals serving as a building block of vdWs heterostructures, which may further enlarge their applications in on-chip optoelectronic devices, such as single photon emitters, light-emitting diodes, and photodetectors.

In general, several kinds of methods have been applied to fabricate PbI₂ nanosheets including mechanical exfoliation, physical vapor deposition (PVD), and solution process.[30,41,42] In contrast to exfoliation and PVD, solution method has the advantages of high productivity, simple operation and low manufacture cost, and the as-grown crystals are of good crystalline quality, regular shapes, and uniform surface. [34,42] But to date. it still remains a big challenge to synthesize atomically thin PbI₂ flakes via solution process. Herein, with the precise control of the concentration of PbI2 precursor solution as well as crystalline nucleation rate, we have successfully obtained PbI2 crystals down to atomic scale as thin as mono or few layers. Figure 1b briefly illustrates the preparation process; we first drop cast saturated PbI₂ aqueous solution onto a plasma-cleaned Si/SiO₂ substrate, and subsequently heat the substrate to 180 °C within 5 min to assist PbI₂ flakes with nucleation (see more details in the Experimental Section). The whole process is simple and quick, which avoids the rigorous conditions of high temperature and vacuum environment as required by PVD method, and the uncontrollability of the flake thickness, shape, and productivity in exfoliation process. The high yields and good morphology of our grown PbI2 flakes can be revealed by characterizations of optical microscope and atomic force microscopy (AFM). From the optical image in Figure 1c, abundant PbI₂ flakes with different thickness are fully deposited on the substrate, exhibiting regular hexagonal or triangle shape with sharp edge. Figure 1e is an AFM scanning image of the selected region marked by white dashed lines in Figure 1c, suggesting the ultraflat and smooth surface of PbI2 flakes. The height profile indicates that these two typical PbI₂ flakes are around 3.0 and 4.6 nm thick, respectively. Due to the absorbed water layer and other molecules on the substrates, there might be a small deviation between the real and the AFM-measured thickness of PbI₂ flakes, as also can be seen in other 2D materials.^[43,44]

Optical measurements enable us to further check the physical properties of these as-grown PbI_2 flakes. Figure 1d shows the Raman spectra of a typical PbI_2 flake of 10 nm

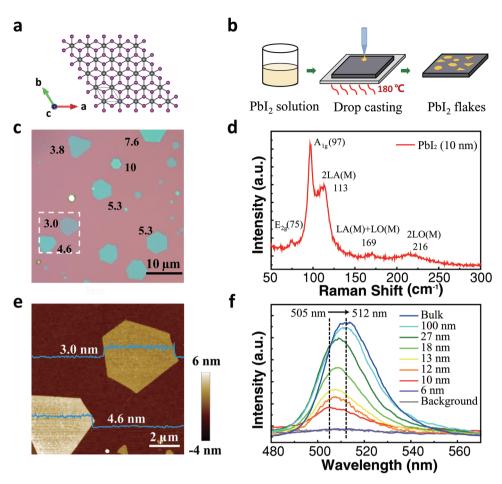


Figure 1. a) The hexagonal lattice of Pbl₂ from top view. The dark gray balls represent lead (Pb) atoms and the purple balls represent iodine (I) atoms. b) Schematic illustration of synthesizing atomically thin Pbl₂ flakes via solution method. Pbl₂ aqueous solution was prepared and drop-cast onto Si/SiO₂ substrate, followed by heating the substrate to 180 °C within 5 min to assist Pbl₂ flakes to nucleate. c) The optical image of the as-grown Pbl₂ flakes with regular hexagonal or triangle shape with sharp edge. The labeled numbers represent the thickness of the corresponding flakes. Scale bar: 10 μm. d) The Raman spectra of a typical 10 nm thick Pbl₂ flake excited by 532 nm laser. e) Atomic force microscopy image of the selected region outlined by white dashed lines in (c) confirms the smooth and flat surface of Pbl₂ flakes. The height profile of the two flakes indicates that their thickness is around 3.0 and 4.6 nm, respectively. Scale bar: 2 μm. f) The photoluminescence spectra of Pbl₂ flakes with different thicknesses measured at room temperature. With decreasing the crystal thickness, the position of emission peak has a continuous blueshift and the intensity decreases correspondingly.

thick excited by 532 nm laser (around 2.33 eV). The characteristic peaks around 97 and 113 cm⁻¹ can be determined as A_{1g} and 2LA(M) (overtone of the LA phonon at the M point of first Brillouin zone) vibration modes, respectively, and the LA(M) + LO(M) (169 cm⁻¹) and 2LO(M) (216 cm⁻¹) Raman peaks are also visible, in line with the previous reports of PbI_2 . [41,45] Furthermore, we could distinguish the subtle split of E_{2g} (75 cm⁻¹) vibration peak as an indication of the 4H phase of our PbI₂ flakes. [37] Thickness-dependent PL of PbI2 flakes was carried out under 290 and 4 K, and the results are shown in Figure 1f and Figure S1 (Supporting Information), respectively. For PbI₂ bulk crystals, a strong emission peak around 512 nm is observed. Owing to quantum confinement, the position of PL emission peak shows a continuous blueshift as the thickness decreases, accompanied with the gradually dropped intensity. When it comes to few layers, the PL signal becomes too weak to recognize at room temperature, because of the direct-indirect semiconductor transition occurred around three layers.^[45,46] However, the PL emission of PbI2 as thin as few layers at cryogenic temperatures is still very remarkable with three distinct peaks, as corresponding to excitonic emission, traps states in bulk, and traps related to surface quality.^[47]

On the basis of atomically thin PbI2 crystals with high yields and good quality, we further interface MoS2 monolayers with these PbI₂ flakes. The thickness of the chosen PbI₂ flakes for MoS₂/PbI₂ stacks is within the range of around 3-9 nm (although we could synthesize even thinner flakes), which are more than four layers and less than 12 layers, as they can keep 2D features and possess a direct bandgap simultaneously.[45,46] For the same reason, MoS₂ monolayers are selected instead of thicker ones.^[1] The exfoliated MoS₂ monolayers are used to cap the as-grown PbI₂ flakes by dry transfer method to construct vdWs heterostructures, as schematically shown in Figure 2a (see the Experimental Section). The side view of MoS2/PbI2 stacks is depicted by a cartoon image in Figure 2b. Figure 2d presents an optical microscope image of one heterostructure sample, in which a large continuous MoS₂ piece covers several PbI₂ flakes. The contours of the PbI₂ flakes are outlined by black dashed lines, and two of them

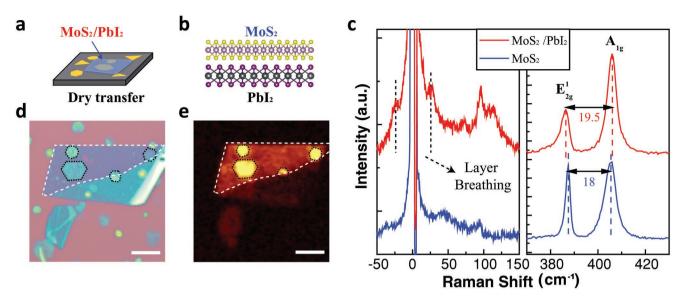


Figure 2. a) Schematic image of MoS_2/PbI_2 stacks. The exfoliated MoS_2 monolayer is used to cap the as-grown PbI_2 flakes by dry transfer method. b) The lattice structure of MoS_2/PbI_2 stacks from side view. The lilac balls represent molybdenum (Mo) atoms and the yellow balls represent sulfur (S) atoms. c) The Raman spectra of pristine MoS_2 monolayer and MoS_2/PbI_2 stacks. d) Optical image of MoS_2/PbI_2 stacks with a large monolayer MoS_2 piece capping several PbI_2 flakes. The hexagonal PbI_2 flakes are marked by black dashed lines, and two of them are completely encapsulated by the monolayer MoS_2 whose outlines are denoted by white dashed lines. Scale bar: 5 μ m. e) The photoluminescence mapping image of the same heterostructure shown in (d), spectrally integrated from 1.79 to 1.88 eV, in which the brilliant yellow denotes the high photoluminescence emission intensity. Scale bar: 5 μ m.

are completely encapsulated by the monolayer MoS2. The thickness of the larger one (about 8 µm²) is around 3.0 nm, and the other (about 3 µm²) is around 12.4 nm. Raman spectroscopy has been extensively used to study the effects of doping, strain, and interlayer interactions in TMDs.[3,4,48,49] As for the Raman spectrum of MoS₂/PbI₂ stacks shown in Figure 2c, the Raman peaks around 96 and 113 cm⁻¹ assigned to PbI₂ are still observable. When comparing with the Raman spectrum of the monolayer MoS_2 alone, in the MoS_2/PbI_2 stacks the A_{1g} peak has a blueshift \approx 0.5 cm⁻¹ and the E_{2g}^1 peak has a redshift \approx 1 cm⁻¹. It may have many origins such as vdWs interactions, strain, doping, and laser-induced thermal effect.^[23,49–53] A very possible scenario for the change of the Raman peak positions is the strong interlayer interaction between MoS2 and PbI2, as evidenced by the appearance of layer breathing mode in the ultralow frequency Raman spectra (denoted in Figure 2c). It is known that the layer breathing mode could only be seen in 2D heterostructures with good quality interface.^[54] Figure 2e illustrates the PL emission mapping under 488 nm laser excitation with integration from 1.79 to 1.88 eV of the entire heterostructure. Strong PL signals are detected in the monolayer MoS₂ region, but even more enhanced PL emission in the regions of MoS₂/PbI₂ stacks, as can be seen from that the brilliant yellow profile of PbI₂ flakes under MoS₂ is quite clear.

Figure 3a carefully compares the PL spectra of the sample shown in Figure 2, with the signal taken from the MoS_2 alone and MoS_2/PbI_2 region, respectively. When forming MoS_2/PbI_2 stacks, the PL signal assigned to monolayer MoS_2 shifts to a high energy position, and the intensity increases by several folds. We have fabricated more than ten samples, all of which show similar optical behavior with the increasing amplitude in the range of 160%–600% if calculated by $\frac{PL(TMD/PbI_2)}{PL(TMD)}.$ Furthermore, similar PL behavior is also observed in PbI₂/MoS₂

stacks in which PbI2 is on top of MoS2 (see Figure S3, Supporting Information). To better understand the origin of these changes, we fit the PL spectra with three Lorentzian peaks, as corresponding to negative trion (X⁻) at ≈1.82 eV, neutral exciton (X) at \approx 1.86 eV, and B exciton at \approx 1.98 eV.^[4,5] From the analysis, the proportion of the trion (X⁻) is greater than that of the neutral exciton (X) in monolayer MoS2 alone, because of the n-type trait of MoS2. [40] With the addition of PbI2, the PL enhancement and blueshift of MoS2 emission peak is because the neutral exciton (X) emission significantly increases, while the trion (X⁻) emission keeps almost unchanged. This clearly reveals that the doping effect is not the main origin of the PL enhancement of MoS2 in MoS2/PbI2 heterostructures, very differently from other 2D systems with high emission of MoS₂. For instance, in MoS₂/BN heterostructures, the underlying BN flakes prevent the n-type doping effect of MoS₂ from SiO₂ substrates effectively—which causes the reduction of trion emission (X-) and then relative enhancement of neutral exciton emission (X)—leading to the stronger PL signal of MoS2 (the detailed comparison can be seen in Figure S4, Supporting Information).[54,55] In MoS₂/PbI₂ heterostructures the inrush of external electrons and holes rather than doping itself accounts for the enhanced emission of the neutral exciton (X). In order to figure out the origin of these charge carries, we have carried out density functional theory (DFT) calculations on the constructed heterostructures (see more details in the Experimental Section and Figure S5, Supporting Information). As shown in Figure 3b, MoS₂/PbI₂ heterostructures show type I band alignment owing to the large bandgap of PbI2 and strong built-in potentials. The excitons originating from the absorption of photons in PbI2 partly separate under the effect of built-in potentials, and quickly accumulate in MoS2 by charge transfer process. These exotic

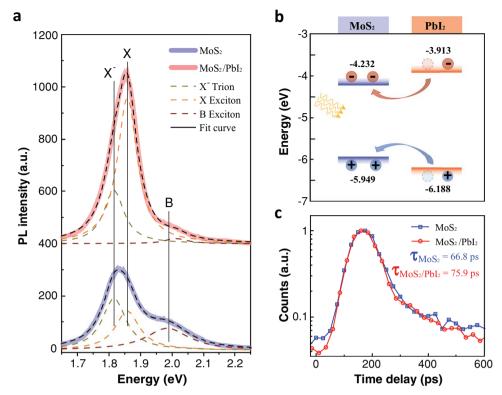
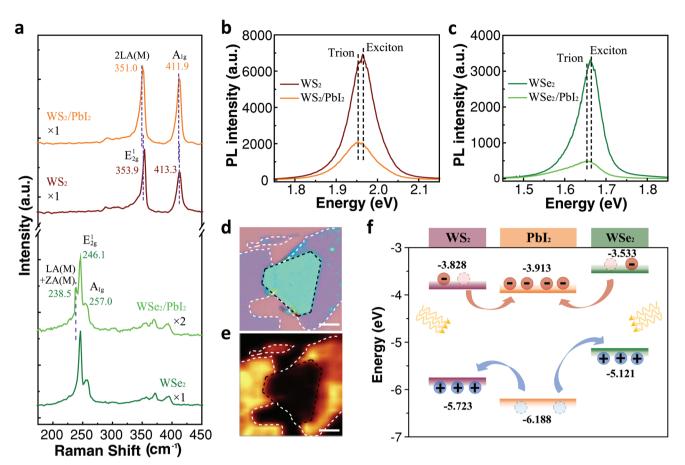



Figure 3. a) The photoluminescence spectra of pristine MoS_2 monolayer and MoS_2/Pbl_2 stacks with 488 nm excitation, in the analysis of three Lorentzian peaks corresponding to negative trion (X⁻) at ≈1.82 eV, neutral exciton (X) at ≈1.86 eV, and B exciton at ≈1.98 eV. In MoS_2/Pbl_2 stacks, the position assigned to MoS_2 shifts to high energy, and the total intensity increases by several folds with the X⁻ emission unchanged. b) Type I band alignment for MoS_2/Pbl_2 stacks with illustratively showing the transfer of photoexcited carriers within the heterostructure, as calculated by density functional theory. The inrush of electrons and holes from Pbl_2 to MoS_2 makes the contribution from neutral exciton emission (X) increase. c) The time-resolved photoluminescence spectra of pristine MoS_2 monolayer and MoS_2/Pbl_2 stacks, showing that the photoluminescence lifetime of MoS_2 in MoS_2/Pbl_2 stacks (≈75.9 ps) is almost the same with that of pristine MoS_2 (≈66.8 ps).

carries occupy the neutral exciton (X) energy level of MoS₂ and release energy by radiative recombination ultimately, leading to the improvement and blueshift of PL emission of MoS₂. It is also noted that in MoS₂/PbI₂ stacks, the B exciton emission peak drops and moves to a higher energy level. Take the existence of heavy Pb atoms in PbI2 and the interlayer coupling between MoS2 and PbI2 into consideration, the change of B exciton emission might be caused by strong spin-orbital coupling. Furthermore, we find that the PL behavior of MoS2 on top of two PbI2 flakes with different thicknesses is almost the same (see Figure S7, Supporting Information), and thus we think that the optical interference effect of PbI2 with different thicknesses is subtle. Time-resolved photoluminescence (TRPL) is highly suitable to analyze and determine the fast charge carrier dynamics in semiconductors. In Figure 3c of TRPL spectra, the PL lifetime of MoS₂ in MoS₂/PbI₂ stacks (≈75.9 ps) has little change compared with that of MoS₂ alone (≈66.8 ps), as MoS₂ plays an acceptor role in the heterostructure. The almost coincident rising edge indicates that the charge transfer process between PbI2 and MoS2 is too fast (less than 25 ps) to distinguish in our experimental setup. Unfortunately, we are unable to obtain any information about the PL lifetime of PbI₂ flakes, as the signal is too weak to detect.

As being typical members of TMDs, WS₂ and WSe₂ exhibit many similar behaviors to MoS₂. Following this rationale, we

further use monolayer WS2 and WSe2 instead of MoS2 to build WS₂/PbI₂ and WSe₂/PbI₂ stacks. The Raman spectra of these stacks excited by 488 nm laser are shown in Figure 4a. The emergence of the Raman peaks characteristic of WS2 and WSe2 also occurs in heterostructures, indicating the high quality of the prepared stacks. Because of the interfacial interaction and the additional absorption by the PbI₂, the peak position of A_{1g} mode exhibits a redshift of ≈1.4 cm⁻¹, and the increasing resonant peak of 2LA(M) mode surpasses the one of E_{2g}^1 mode in the Raman spectra of WS2/PbI2 stacks. In the Raman spectra of WSe₂/PbI₂ stacks, the peak positions of E¹_{2g} and A_{1g} modes keep the same with the case of isolated WSe2, and the emergence of a new resonant Raman peak (LA(M) + ZA(M)) verifies the strong interaction between WSe2 and PbI2. In contrast to the PL enhancement in MoS₂/PbI₂ stacks, the PL emission of WS(Se)2 in WS(Se)2/PbI2 stacks decreases (WS2, 5%-40%; WSe₂, 4%–30% in all the samples we measured) with a redshift by about 10 meV (see Figure 4b,c). The optical image and PL mapping in Figure 4d,e intuitively show this PL quenching effect, where the WSe2/PbI2 region is dramatically dark compared to the bright zone of monolayer WSe2 alone. Our DFT calculations (see Figure 4f) reveal that both WS2/PbI2 and WSe₂/PbI₂ heterostructures exhibit type II band alignment, so that the conduction band of the interface is originated from PbI2 side and the valence band from WS2 or WSe2 side. The

Figure 4. a) The Raman spectra of pristine $WS(Se)_2$ monolayer and $WS(Se)_2/Pbl_2$ stacks. The redshift of A_{1g} mode and the increasing resonant peak of 2LA(M) mode indicate the strong interaction between WS_2 and Pbl_2 layers. The emergence of a new resonant Raman peak (LA(M) + ZA(M)) also verifies the strong interaction between WSe_2 and Pbl_2 layers. b,c) The photoluminescence spectra of pristine WS_2 monolayer and WS_2/Pbl_2 stacks (b), and pristine WSe_2 monolayer and WSe_2/Pbl_2 stacks (c). In $WS(Se)_2/Pbl_2$ stacks, the photoluminescence of $WS(Se)_2$ shows a significant quenching, as well as a redshift in peak position. d) Optical image of WSe_2/Pbl_2 stacks with monolayer WSe_2 capping a big Pbl_2 flake. The contour of the hexagonal Pbl_2 flake is marked by black dashed lines, and the monolayer MSe_2/Pbl_2 by white dashed lines. Scale bar: $WSe_2/PSe_$

different flow directions of electrons and holes lead to the loss of neutral excitons; as a result, the emission of trions with low-energy position becomes dominant. Therefore, the total decrease and redshift of $WS(Se)_2$ emission peak in $WS(Se)_2$ / PbI_2 stacks are observed. The opposite effect of PbI_2 on MoS_2 and $WS(Se)_2$ also implies that the different types of band alignment (instead of doping effect) are the dominant factor of determining and manipulating the optical properties of TMD/ PbI_2 interfacial semiconductors. Therefore, PbI_2 atomically thin crystals show great potential in the band structure engineering as a new building block of 2D heterostructures.

In summary, atomically thin PbI_2 flakes of high quality have been successfully synthesized for the first time. A series of atomic-scale heterostructures constructed by PbI_2 and TMD monolayers—namely MoS_2 , WS_2 , and WSe_2/PbI_2 —are under investigation to illustrate the unprecedented possibilities and capabilities of 2D PbI_2 in the band structure engineering. The optical measurement results show that the addition of

PbI₂ brings distinctive impacts on different TMDs of similar electronic structure, originating from different types of band alignment. Concretely speaking, an enhanced PL of MoS₂ results from the high emission efficiency of accumulated charges in the form of type I band alignment in MoS₂/PbI₂ stacks, but the separated electron–hole pairs lead to the dramatically quenched PL effect of WS₂ or WSe₂ in type II WS₂/PbI₂ and WSe₂/PbI₂ stacks. Atomic-level PbI₂-based heterostructures provide us with more freedom to deterministically manipulate the semiconducting interface properties such as the exciton behavior and surface energy transfer process, by selecting the appropriate constituents in the vast family of 2D materials.

Experimental Section

Fabrication: PbI₂ precursor solution was prepared by dissolving PbI₂ powder (Sigma-Aldrich) in deionized water (1 mg mL⁻¹) and heated with stirring at 90 °C until PbI₂ powder was dissolved completely. Then the

www.advancedsciencenews.com

www.advmat.de

solution was drop-cast on an oxygen-plasma-cleaned SiO_2/Si substrate at room temperature, followed by heating the substrate to 180 °C within 5 min to help Pbl_2 nanosheets nucleate. The monolayer TMDs were obtained by mechanical exfoliation method and then transferred onto the pregrown Pbl_2 flakes by polypropylene carbonate (PPC)-assisted dry transfer technique.

Characterization: The topography and height profile were measured by AFM (Park XE7) in noncontact mode. Micro-PL spectra of PbI₂ flakes were measured by 410 nm solid-state laser excitation source with the laser beam being focused to a spot size of $\approx 2~\mu m$, and PL spectra of pristine TMDs and TMDs/PbI2 stacks were excited by 488 nm continuous wave laser with the laser beam being focused to a spot size of ≈500 nm. The PL signals were recorded with a monochromator and a liquid-nitrogen-cooled charge-coupled device (CCD). The Raman spectra were acquired using a micro-Raman system (WITec alpha 300R) equipped with 1800 grooves per millimeter gratings and a liquid-nitrogen-cooled CCD detector. For TRPL measurements, the excitation pulse laser (410 nm beam, 100 fs, 80 MHz) was focused by a microscopic objective ($100\times$; NA = 0.95) onto the sample at normal incidence. The backscattered signal filtered by a proper long pass was collected using time-correlated single-photon counting, which has a resolution of ≈25 ps. All the measurements were conducted under room temperature, unless stated otherwise.

Computational Details: The DFT calculations were carried out by using the Vienna ab initio Simulation Package (VASP).[56] The exchange correlation interaction was treated within the generalized gradient approximation parameterized by the Perdew, Burke, and Ernzerhof.^[57] Electronic wave functions were built in the plane wave basis sets with a kinetic energy cutoff of 400 eV. All the atoms in models were fully optimized using the optimized Becke88 van der Waals functional until the force on each atom was less than 0.01 eV \mathring{A}^{-1} . [58] The reciprocal space was sampled with a k-grid density of 0.02 $\times~2\pi \mathring{A}^{-1}$ for the structure optimization and $0.01 \times 2\pi \text{Å}^{-1}$ for the calculations of electronic structures. In our models, a vacuum layer of 20 Å was used to isolate neighboring periodic images in all systems. Four-layer PbI2 was utilized to mimic the experimental PbI2 flake. The thicker PbI2 flake was not considered here since our test indicates that it has little effect on the band alignments of heteroiunctions. It is important to mention that although DFT underestimates the electronic bandgap, it provides good agreement with the optical bandgaps in these low-dimensional systems.^[59]

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the National Basic Research Program of China-Fundamental Studies of Perovskite Solar Cells (2015CB932200), the National Natural Science Foundation of China (91833302, 61801210, 91733302, 11474164, 61634001 and 11574147), the Natural Science Foundation of Jiangsu Province (BK20180686, BK20150043, and BK20150064), the Joint Research Program between China and European Union (2016YFE0112000), the National Science Fund for Distinguished Young Scholars (61725502), and the Synergetic Innovation Center for Organic Electronics and Information Displays. L.W. gratefully acknowledges support from the Chinese Thousand Talents Plan for Young Professionals. L.Z. acknowledge support from the U.S. Department of Energy through the LANL/LDRD Program and the Center for Nonlinear Studies and W.Z. thanks startup funding from Westlake University.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

2D materials, band alignment, heterostructures, interlayer interactions, lead iodide

Received: October 10, 2018 Revised: January 3, 2019 Published online:

- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
- [2] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
- [3] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr., S. T. Pantelides, K. I. Bolotin, *Nano Lett.* 2013, 13, 3626.
- [4] S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 2013, 13, 5944.
- [5] M. S. Kim, C. Seo, H. Kim, J. Lee, D. H. Luong, J. H. Park, G. H. Han, J. Kim, ACS Nano 2016, 10, 6211.
- [6] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, *Nat. Commun.* 2013, 4, 1474.
- [7] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan, Nat. Mater. 2013, 12, 207.
- [8] K. Zhao, Z. Deng, X. C. Wang, W. Han, J. L. Zhu, X. Li, Q. Q. Liu, R. C. Yu, T. Goko, B. Frandsen, L. Liu, F. Ning, Y. J. Uemura, H. Dabkowska, G. M. Luke, H. Luetkens, E. Morenzoni, S. R. Dunsiger, A. Senyshyn, P. Boni, C. Q. Jin, *Nat. Commun.* 2013, 4, 1442.
- [9] G. Zhao, C. Lin, Z. Deng, G. Gu, S. Yu, X. Wang, Z. Gong, Y. J. Uemera, Y. Li, C. Jin, Sci. Rep. 2017, 7, 14473.
- [10] N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, Sci. Adv. 2017, 3, e1601832.
- [11] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Phys. Rev. B 2013, 88, 085433.
- [12] B. Zheng, C. Ma, D. Li, J. Lan, Z. Zhang, X. Sun, W. Zheng, T. Yang, C. Zhu, G. Ouyang, G. Xu, X. Zhu, X. Wang, A. Pan, J. Am. Chem. Soc. 2018, 140, 11193.
- [13] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 2014, 9, 682.
- [14] S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, *Nano Lett.* 2014, 14, 3185.
- [15] M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, L. J. Li, *Nat. Commun.* 2015, 6, 7666.
- [16] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, X. Xu, *Nat. Commun.* 2015, 6, 6242.
- [17] J. Zhang, J. Wang, P. Chen, Y. Sun, S. Wu, Z. Jia, X. Lu, H. Yu, W. Chen, J. Zhu, G. Xie, R. Yang, D. Shi, X. Xu, J. Xiang, K. Liu, G. Zhang, Adv. Mater. 2016, 28, 1950.
- [18] M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, P. Plochocka, *Nano Lett.* 2017, 17, 6360.
- [19] J. Yuan, S. Najmaei, Z. Zhang, J. Zhang, S. Lei, P. M. Ajayan, B. I. Yakobson, J. Lou, ACS Nano 2015, 9, 555.
- [20] A. Boulesbaa, V. E. Babicheva, K. Wang, I. I. Kravchenko, M.-W. Lin, M. Mahjouri-Samani, C. B. Jacobs, A. A. Puretzky, K. Xiao, I. Ivanov, C. M. Rouleau, D. B. Geohegan, ACS Photonics 2016, 3, 2389.
- [21] Y. Li, J. D. Cain, E. D. Hanson, A. A. Murthy, S. Hao, F. Shi, Q. Li, C. Wolverton, X. Chen, V. P. Dravid, *Nano Lett.* **2016**, *16*, 7696.
- [22] M. R. Habib, H. Li, Y. Kong, T. Liang, S. M. Obaidulla, S. Xie, S. Wang, X. Ma, H. Su, M. Xu, Nanoscale 2018, 10, 16107.

- [23] S. Wang, X. Wang, J. H. Warner, ACS Nano 2015, 9, 5246.
- [24] H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, G. Lerondel, Adv. Mater. 2017, 29, 1700308.
- [25] Z. Q. Wu, J. L. Yang, N. K. Manjunath, Y. J. Zhang, S. R. Feng, Y. H. Lu, J. H. Wu, W. W. Zhao, C. Y. Qiu, J. F. Li, S. S. Lin, Adv. Mater. 2018, 30, 1706527.
- [26] I. C. Schlüter, M. Schlüter, Phys. Rev. B 1974, 9, 1652.
- [27] A. S. Toulouse, B. P. Isaacoff, G. Shi, M. Matuchová, E. Kioupakis, R. Merlin, *Phys. Rev. B* 2015, *91*, 165308.
- [28] R. Street, S. Ready, K. Van Schuylenbergh, J. Ho, J. Boyce, P. Nylen, K. Shah, L. Melekhov, H. Hermon, J. Appl. Phys. 2002, 91, 3345.
- [29] X. Liu, S. T. Ha, Q. Zhang, M. de la Mata, C. Magen, J. Arbiol, T. C. Sum, Q. Xiong, ACS Nano 2015, 9, 687.
- [30] M. Zhong, L. Huang, H.-X. Deng, X. Wang, B. Li, Z. Wei, J. Li, J. Mater. Chem. C 2016, 4, 6492.
- [31] J. Zhang, T. Song, Z. Zhang, K. Ding, F. Huang, B. Sun, J. Mater. Chem. C 2015, 3, 4402.
- [32] S. Chen, G. Shi, Adv. Mater. 2017, 29, 1605448.
- [33] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699.
- [34] J. Liu, Y. Xue, Z. Wang, Z. Q. Xu, C. Zheng, B. Weber, J. Song, Y. Wang, Y. Lu, Y. Zhang, Q. Bao, ACS Nano 2016, 10, 3536.
- [35] L. Niu, X. Liu, C. Cong, C. Wu, D. Wu, T. R. Chang, H. Wang, Q. Zeng, J. Zhou, X. Wang, W. Fu, P. Yu, Q. Fu, S. Najmaei, Z. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. He, T. Yu, Z. Liu, Adv. Mater. 2015, 27, 7800.
- [36] Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, *Nature* 2018, 562, 249.
- [37] R. Zallen, M. L. Slade, Solid State Commun. 1975, 17, 1561.
- [38] M. Ando, M. Yazaki, I. Katayama, H. Ichida, S. Wakaiki, Y. Kanematsu, J. Takeda, *Phys. Rev. B* 2012, 86, 155206.
- [39] R. Street, S. Ready, F. Lemmi, K. Shah, P. Bennett, Y. Dmitriyev, J. Appl. Phys. 1999, 86, 2660.
- [40] B. Liu, W. Zhao, Z. Ding, I. Verzhbitskiy, L. Li, J. Lu, J. Chen, G. Eda, K. P. Loh, Adv. Mater. 2016, 28, 6457.

- [41] P. Wangyang, H. Sun, X. Zhu, D. Yang, X. Gao, Mater. Lett. 2016, 168. 68.
- [42] W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, F. Huang, Adv. Electron. Mater. 2016, 2, 1600291.
- [43] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. Fam, A. I. Tok, Q. Zhang, H. Zhang, Small 2012, 8, 63.
- [44] X. Lu, M. I. B. Utama, J. Lin, X. Luo, Y. Zhao, J. Zhang, S. T. Pantelides, W. Zhou, S. Y. Quek, Q. Xiong, Adv. Mater. 2015, 27 4502
- [45] M. Yagmurcukardes, F. M. Peeters, H. Sahin, Phys. Rev. B 2018, 98, 085431.
- [46] C. Cong, J. Shang, L. Niu, L. Wu, Y. Chen, C. Zou, S. Feng, Z.-J. Qiu, L. Hu, P. Tian, Z. Liu, T. Yu, R. Liu, Adv. Opt. Mater. 2017, 5, 1700609.
- [47] I. Baltog, M. Baibarac, S. Lefrant, J. Phys.: Condens. Matter 2009, 21, 025507.
- [48] M. H. Chiu, M. Y. Li, W. Zhang, W. T. Hsu, W. H. Chang, M. Terrones, H. Terrones, L. J. Li, ACS Nano 2014, 8, 9649.
- [49] X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, P. H. Tan, Chem. Soc. Rev. 2015, 44, 2757.
- [50] H. Li, J. B. Wu, F. Ran, M. L. Lin, X. L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, P. H. Tan, ACS Nano 2017, 11, 11714.
- [51] K. G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu, C. Casiraghi, ACS Nano 2014, 8, 9914.
- [52] M. Buscema, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, Nano Res. 2014, 7, 561.
- [53] S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, R. S. Katiyar, J. Phys. Chem. C 2013, 117, 9042.
- [54] L. Liang, J. Zhang, B. G. Sumpter, Q. H. Tan, P. H. Tan, V. Meunier, ACS Nano 2017, 11, 11777.
- [55] M. D. Tran, J. H. Kim, H. Kim, M. H. Doan, D. L. Duong, Y. H. Lee, ACS Appl. Mater. Interfaces 2018, 10, 10580.
- [56] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- [57] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [58] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [59] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan, *Nat. Mater.* 2014, 13, 1135.